Classical Hansen's database (covering to 2019) is still available here 

References of 'Advances' tutorial are below (first author - alphabetical order):

1.            Aoyama, M.; Bakker, K.; van Ooijen, J.; Ossebaar, S.; Woodward, E. M. S. Report from an International Nutrient Workshop focusing on Phosphate Analysis; Royal Netherlands Institute for Sea Research Texel, Netherland, 12-15 November 2012: 2012; ISBN 978-4-908583-01-8.

2.            Coverly, S.; Kérouel, R.; Aminot, A., A re-examination of matrix effects in the segmented-flow analysis of nutrients in sea and estuarine water. Analytica Chimica Acta 2012, 712, 94-100.

3.            Fikarová, K.; Horstkotte, B.; Sklenářová, H.; Švec, F.; Solich, P., Automated continuous-flow in-syringe dispersive liquid-liquid microextraction of mono-nitrophenols from large sample volumes using a novel approach to multivariate spectral analysis. Talanta 2019, 202, 11-20.

4.            Grand, M. M.; Chocholouš, P.; Růžička, J.; Solich, P.; Measures, C. I., Determination of trace zinc in seawater by coupling solid phase extraction and fluorescence detection in the Lab-On-Valve format. Analytica Chimica Acta 2016, 923, 45-54.

5.            Hatta, M.; Measures, C. I.; Ruzicka, J., Programmable Flow Injection. Principle, methodology and application for trace analysis of iron in a sea water matrix. Talanta 2018, 178, 698-703.

6.            Hatta, M.; Measures, C. I.; Ruzicka, J., Determination of traces of phosphate in sea water automated by programmable flow injection: Surfactant enhancement of the phosphomolybdenum blue response. Talanta 2019, 191, 333-341.

7.            Hatta, M.; Ruzicka, J.; Measures, C. I., The performance of a new linear light path flow cell is compared with a liquid core waveguide and the linear cell is used for spectrophotometric determination of nitrite in sea water at nanomolar concentrations. Talanta 2020, 219, 121240.

8.            Hatta, M.; Ruzicka, J.; Measures, C. I.; Davis, M., Programmable flow injection in batch mode: Determination of nutrients in sea water by using a single, salinity independent calibration line, obtained with standards prepared in distilled water. Talanta 2021, 232, 122354.

9.            Horstkotte, B.; Fikarová, K.; Cocovi-Solberg, D. J.; Sklenářová, H.; Solich, P.; Miró, M., Online coupling of fully automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept. Talanta 2017, 173, 79-87.

10.          Horstkotte, B.; Chocholouš, P.; Solich, P., Large volume preconcentration and determination of nanomolar concentrations of iron in seawater using a renewable cellulose 8-hydroquinoline sorbent microcolumn and universal approach of post-column eluate utilization in a Lab-on-Valve system. Talanta 2016, 150, 213-223.

11.          Horstkotte, B.; Lopez de los Mozos Atochero, N.; Solich, P., Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters. Journal of Chromatography A 2018, 1555, 1-9.

12.          Horstkotte, B.; Solich, P., The Automation Technique Lab-In-Syringe: A Practical Guide. Molecules 2020, 25 (7), 1612.

13.          Johnson, K. S.; Petty, R. L., Determination of phosphate in seawater by flow injection analysis with injection of reagent. Analytical Chemistry 1982, 54 (7), 1185-1187.

14.          Keihei Ueno; Toshiaki Imamura; Cheng, K. L., Handbook of Organic Analytical Reagents. CRC Press: 1992; p 626. ISBN 9780849342875

15.          Liedberg, B.; Nylander, C.; Lunström, I., Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 1983, 4, 299-304.

16.          Luque de Castro, M. D., Chapter 8 - Membrane-Based Separation Techniques: Dialysis, Gas Diffusion and Pervaporation. In Comprehensive Analytical Chemistry, Kolev, S. D.; McKelvie, I. D., Eds. Elsevier: 2008; Vol. 54, pp 203-234.

17.          Luque de Castro, M. D.; Papaefstathiou, I., Analytical pervaporation: a new separation technique. TrAC Trends in Analytical Chemistry 1998, 17 (1), 41-49.

18.          Ma, J.; Shu, H.; Yang, B.; Byrne, R. H.; Yuan, D., Spectrophotometric determination of pH and carbonate ion concentrations in seawater: Choices, constraints and consequences. Analytica Chimica Acta 2019, 1081, 18-31.

19.          Maya, F.; Estela, J. M.; Cerdà, V., Completely automated in-syringe dispersive liquid–liquid microextraction using solvents lighter than water. Analytical and Bioanalytical Chemistry 2012, 402 (3), 1383-1388.

20.          McKelvie, I. D.; Peat, D. M. W.; Matthews, G. P.; Worsfold, P. J., Elimination of the Schlieren effect in the determination of reactive phosphorus in estuarine waters by flow-injection analysis. Analytica Chimica Acta 1997, 351 (1), 265-271.

21.          Measures, C. I.; Yuan, J.; Resing, J. A., Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection. Marine Chemistry 1995, 50 (1), 3-12.

22.          Mesquita, R. B. R.; Rangel, A. O. S. S., A review on sequential injection methods for water analysis. Analytica Chimica Acta 2009, 648 (1), 7-22.

23.          Miró, M., On-chip microsolid-phase extraction in a disposable sorbent format using mesofluidic platforms. TrAC Trends in Analytical Chemistry 2014, 62, 154-161.

24.          Miró, M.; Frenzel, W., A critical examination of sorbent extraction pre-concentration with spectrophotometric sensing in flowing systems. Talanta 2004, 64 (2), 290-301.

25.          Miró, M.; Hansen, E. H., Solid reactors in sequential injection analysis: recent trends in the environmental field. TrAC Trends in Analytical Chemistry 2006, 25 (3), 267-281.

26.          Miró, M.; Hartwell, S. K.; Jakmunee, J.; Grudpan, K.; Hansen, E. H., Recent developments in automatic solid-phase extraction with renewable surfaces exploiting flow-based approaches. TrAC Trends in Analytical Chemistry 2008, 27 (9), 749-761.

27.          Nagul, E. A.; McKelvie, I. D.; Worsfold, P.; Kolev, S. D., The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Analytica Chimica Acta 2015, 890, 60-82.

28.          Reynolds, O., III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proceedings of the Royal Society of London 1883, 35 (224-226), 84-99.

29.          Ruzicka, J., Lab-on-valve: universal microflow analyzer based on sequential and bead injection. Analyst 2000, 125 (6), 1053-1060.

30.          Ruzicka, J., Redesigning flow injection after 40 years of development: Flow programming. Talanta 2018, 176, 437-443.

31.          Ruzicka, J.; Hansen, E. H., Flow Injection Analysis, 2nd Edition. J. Wiley: New York, 1988; p 528. ISBN 978-0-471-81355-2

32.          Ruzicka, J.; Marshall, G. D., Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Analytica Chimica Acta 1990, 237, 329-343.

33.          Ruzicka, J.; Marshall, G. D.; Measures, C. I.; Hatta, M., Flow injection programmed to function in batch mode is used to determine molar absorptivity and to investigate the phosphomolybdenum blue method. Talanta 2019, 201, 519-526.

34.          Ruzicka, J.; Pollema, C. H.; Scudder, K. M., Jet ring cell: a tool for flow injection spectroscopy and microscopy on a renewable solid support. Analytical Chemistry 1993, 65 (24), 3566-3570. 10.1021/ac00072a006

35.          Růžička, J., Tutorial review. Discovering flow injection: journey from sample to a live cell and from solution to suspension. Analyst 1994, 119 (9), 1925-1934. 10.1039/AN9941901925

36.          Růžička, J.; Hansen, E. H., Flow injection analysis: Part X. theory, techniques and trends. Analytica Chimica Acta 1978, 99 (1), 37-76.

37.          Santos, I. C.; Mesquita, R. B. R.; Bordalo, A. A.; Rangel, A. O. S. S., Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method. Talanta 2015, 133, 7-14.

38.          Sklenářová, H.; Voráčová, I.; Chocholouš, P.; Polášek, M., Quantum dots as chemiluminescence enhancers tested by sequential injection technique: Comparison of flow and flow-batch conditions. Journal of Luminescence 2017, 184, 235-241.

39.          Starý, J., CHAPTER 3 - THEORY OF THE SOLVENT EXTRACTION OF METAL CHELATES. In The Solvent Extraction of Metal Chelates, Starý, J., Ed. Pergamon: 1964; pp 21-38.

40.          Steimle, E. T.; Kaltenbacher, E. A.; Byrne, R. H., In situ nitrite measurements using a compact spectrophotometric analysis system. Marine Chemistry 2002, 77 (4), 255-262.

41.          Wolcott, D. K.; Marshall, G. D. Pulseless, reversible precision piston-array pump. USP 6,079,313, 2000.

42.          Worsfold, P. J.; Clough, R.; Lohan, M. C.; Monbet, P.; Ellis, P. S.; Quétel, C. R.; Floor, G. H.; McKelvie, I. D., Flow injection analysis as a tool for enhancing oceanographic nutrient measurements—A review. Analytica Chimica Acta 2013, 803, 15-40.

43.          Yebra-Biurrun, M. C., Flow Injection Analysis of Marine Samples. Nova Science Publishers: New York, 2009; p 293. ISBN 978-1-60741-506-0

44.          Zagatto, E. A. G.; Arruda, M. A. Z.; Jacintho, A. O.; Mattos, I. L., Compensation of the Schlieren effect in flow-injection analysis by using dual-wavelength spectrophotometry. Analytica Chimica Acta 1990, 234, 153-160.

45.          Zagatto, E. A. G.; Carneiro, J. M. T.; Vicente, S.; Fortes, P. R.; Santos, J. L. M.; Lima, J. L. F. C., Mixing chambers in flow analysis: A review. Journal of Analytical Chemistry 2009, 64 (5), 524-532.