Eugen Hruška, Ph.D.

Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Czech Republic

Website: hruska-lab.github.io
ORCID ID: 0000-0001-5679-8419
Google Scholar: Rq6m2UIAAAAJ
ResearcherID: AAY-5878-2020
Scopus Author ID: 57193802868
ResearchGate: Eugen-Hruska-3
LinkedIn: eugen-hruska

Research focus

  • High-throughput simulation and explainable machine learning of drug-protein interactions

Research experience

  • since 2023 Assistant professor, Faculty of Pharmacy, Charles University, Czechia
  • 2020-2022 Postdoctoral Fellow, Emory University, USA, Research topic: High-throughput simulation of explicit solvation at DFT accuracy and explainable machine learning of chemical properties, Advisor: Fang Liu
  • 2014-2020 Graduate Research Assistant, Rice University, USA, Thesis title: Adaptive sampling of Conformational Dynamics, Advisor: Cecilia Clementi

Education

  • 2014-2020 Ph.D., Physics, Rice University, USA
  • 2011-2014 Bachelor, Biochemistry, University of Regensburg, Germany
  • 2011-2012 Bachelor, Technical Physics, Ilmenau University of Technology, Germany

Grants

Charles University starting grant PRIMUS24/MED/004 "Quantitative prediction of drug metabolism", 2024-2027, PI

Selected publications

Chen, X., Sun, Y., Hruska, E., Dixit, V., Yang, J., He, Y., Wang, Y., & Liu, F. (2025). Detecting thermodynamic phase transition via explainable machine learning of photoemission spectroscopy. Newton, 1(3). doi.org/10.1016/j.newton.2025.100066

Grenda, P., Ogos, M., & Hruska, E. (2025). Automated structural refinement of docked complexes in cytochrome P450 using molecular dynamics. Preprint. doi.org/10.26434/chemrxiv-2025-mvv4k-v3

Suwała, D., & Hruska, E. (2024). The wins and failures of current docking methods tested on the flexible active site of cytochromes P450. Preprint. doi.org/10.26434/chemrxiv-2024-05299-v2

Chen, X., Li, P., Hruska, E., & Liu, F. (2023). ∆-machine learning for quantum chemistry prediction of solution-phase molecular properties at the ground and excited states. Phys. Chem. Chem. Phys., 25(19), 13417–13428. doi.org/10.1039/D3CP00506B

Hruska, E., Zhao, L., & Liu, F. (2022). Ground truth explanation dataset for chemical property prediction on molecular graphs. Preprint. doi.org/10.26434/chemrxiv-2022-96slq-v2

Quantum Chemistry in the Age of Machine Learning, 1st Edition, Elsevier, Chapter 6: Machine learning: An overview, Eugen Hruska, Fang Liu, Editor: Pavlo Dral, ISBN: 9780323900492

Hruska, E., Gale, A., Huang, X., & Liu, F. (2022). AutoSolvate : A Toolkit for Automating Quantum Chemistry Design and Discovery of Solvated Molecules. J. Chem. Phys. doi.org/10.1063/5.0084833

Hruska, E., Gale, A., & Liu, F. (2022). Bridging the experiment-calculation divide: Machine learning corrections to redox potential calculations in implicit and explicit solvent models. J. Chem. Theory Comput. doi.org/10.1021/acs.jctc.1c01040

Hruska, E., Balasubramanian, V., Lee, H., Jha, S., & Clementi, C. (2020). Extensible and scalable adaptive sampling on supercomputers. J. Chem. Theory Comput. doi.org/10.1021/acs.jctc.0c00991

Hruska, E., Abella, J. R., Nüske, F., Kavraki, L. E., & Clementi, C. (2018). Quantitative comparison of adaptive sampling methods for protein dynamics. J. Chem. Phys. doi.org/10.1063/1.5053582

 

© Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic
Website information | Powered by Kentico